Marine Animal Tissue Genomic DNA Extraction Kit

Item N°: NB-03-0031 50 preps
NB-03-0032 100 preps

Kit Content

<table>
<thead>
<tr>
<th>Content</th>
<th>NB-03-0031</th>
<th>NB-03-0032</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solution DS</td>
<td>15 ml</td>
<td>30 ml</td>
</tr>
<tr>
<td>Solution MS</td>
<td>20 ml</td>
<td>40 ml</td>
</tr>
<tr>
<td>Proteinase K</td>
<td>1 ml</td>
<td>2 ml</td>
</tr>
<tr>
<td>Wash Buffer PS</td>
<td>30 ml</td>
<td>60 ml</td>
</tr>
<tr>
<td>Wash Buffer PE</td>
<td>15 ml</td>
<td>30 ml</td>
</tr>
<tr>
<td>Eluent Buffer TE</td>
<td>5 ml</td>
<td>10 ml</td>
</tr>
<tr>
<td>Spin Column</td>
<td>50 each</td>
<td>100 each</td>
</tr>
</tbody>
</table>

Description

The Marine Animal Tissue Genomic DNA Purification Kit provides a simple and rapid method for high quality genomic DNA purification from tissues (either fresh or frozen at -70°C until use) of marine animal, such as fish, shrimp, shellfish or crab. The Genomic DNA system uses the silica-gel-membrane technology for simple and fast isolation of Genomic DNA without phenol/chloroform. Homogenization is not necessary since tissues are directly lysed by Proteinase K. The buffer system is optimized to allow selective binding of DNA to the silica-gel membrane. The simple centrifugation protocol completely removes contaminants such as proteins, divalent cations, and secondary metabolites. Pure DNA is then eluted in water or low-salt buffer, ready to use. The typical yield of genomic DNA is 3-35 µg from 10 mg of tissue. The purified high molecular weight genomic DNA is suitable for direct use in all common molecular biology applications: PCR, restriction digestion, cloning, DNA sequencing and Southern blot analysis.
Features
Efficient: 3-35 µg of genomic DNA from 10 mg of tissue or 1 x 10^6-10^7 cultured cells.
Fast: Procedure takes only 30 min.
Universal: Purifies genomic DNA from various sources.
Safe: No phenol/chloroform extraction step.
High purity: Purified DNA is ready for downstream application such as PCR, restriction digestion.

Downstream Applications
Purified DNA is free from contaminants and enzyme inhibitors, and typically has A_{260}/A_{280} ratios between 1.7 and 1.9, and is suitable for applications such as:
- Restriction digestion
- PCR
- Labeling
- Library construction

Storage
Store Protein K at -20°C, other reagents can be stored at room temperature for up to 1 year. Any precipitate in the Solution DS and Solution MS can be re-dissolved by incubating at 37°C before use.

Important Notes
- Prior to the initial use of the kit, dilute the Wash Buffer(PE) with ethanol (96-100%):

<table>
<thead>
<tr>
<th></th>
<th>NB-03-0031 (50preps)</th>
<th>NB-03-0032 (100preps)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wash Buffer(PE)</td>
<td>15 ml</td>
<td>30 ml x2</td>
</tr>
<tr>
<td>Ethanol</td>
<td>45 ml</td>
<td>90 ml x2</td>
</tr>
<tr>
<td>Total Volume</td>
<td>60 ml</td>
<td>120 ml x2</td>
</tr>
</tbody>
</table>

After the ethanol has been added, mark the check box on the bottle to indicate the completed step.
- Examine the solution for precipitates before each use. Re-dissolve any precipitate by warming the solution to 37°C and cooling to 25°C.
- All purification steps should be carried out at room temperature.
Protocol

1. Marine animal tissue (either fresh or frozen at -70°C until use) can be processed by freezing with liquid nitrogen and grinding into a fine powder using a mortar and pestle. Add 10mg of this tissue powder to a 1.5ml microcentrifuge tube. Do not exceed 10 mg or it will reduce the lyse efficiency.

2. Add 200 µl Solution DS. Vortex vigorously to resuspend cells. It is essential that the sample and Solution DS are mixed immediately and thoroughly by vortexing or pipetting to yield a homogeneous solution.

Optional: If RNA-free genomic DNA is required, add 4 µl RNase A (100 mg/ml) and incubate for 5 minutes at room temperature. RNase A (100 mg/ml) can be purchased separately.

3. Add 20 µl Proteinase K. Mix thoroughly by vortexing. Incubate at 55°C and inverting at times till a clear homogeneous solution is produced, spin down the water beads from the wall of the tube.

4. Add 220 µl Solution MS, Mix thoroughly by vortexing. Incubate at 65°C for 10 minutes to yield a homogeneous solution. Spin down the water beads from the wall of the tube.

5. Add 220 µl ethanol (96–100%) to the sample, and mix thoroughly by inverting. A precipitate may appear. Pipet the mixture from step 4 into the spin column placed in a 2 ml collection tube (provided). Centrifuge at 12,000 rpm for 1 min. Discard flow-through.

6. Add 500 µl Wash Buffer PS, and centrifuge for 1 min at 12,000 rpm. Discard flow-through.

7. Add 500 µl Wash Buffer PE, and centrifuge for 1 min at 12,000 rpm. Discard flow-through. Repeat step 6 again.

8. Centrifuge for 3 min at 12,000 rpm to dry the column membrane. Discard flow-through and collection tube.

Note: It is important to dry the membrane of the spin column, since residual ethanol may interfere with subsequent reactions. This centrifugation step ensures that no residual ethanol will be carried over during the following elution. Following the centrifugation step, remove the spin column carefully so that the column does not come into contact with the flow-through, since this will result in carryover of ethanol. If carryover of ethanol occurs, empty the collection tube, then reuse it in another centrifugation for 1 min at 12,000 rpm.

9. Place the spin column in a clean 1.5 ml microcentrifuge tube (not provided), and pipet 30-100 µl Eluent Buffer AE (prewarm to 65°C) directly onto the membrane. Incubate at room temperature for 2 minutes, and then centrifuge for 2 min at 12,000 rpm to elute. The tube contains the purified DNA. Store the DNA at -20°C.