ALC-0315 [2036272-55-4]

Cat# HY-138170-100mg

Size : 100mg

Brand : MedChemExpress

Request more information

Contact local distributor :


Phone : +1 850 650 7790

Description

ALC-0315 is an ionisable aminolipid that is responsible for mRNA compaction and aids mRNA cellular delivery and its cytoplasmic release through suspected endosomal destabilization. ALC-0315 can be used to form lipid nanoparticle (LNP) delivery vehicles. Lipid-Nanoparticles have been used in the research of mRNA COVID-19 vaccine[1].

In Vitro

Preparation of Lipid Nanoparticles

Here we provide lipid molar ratios for LNPs in FDA-approved BNT162b2 (a COVID-19 mRNA vaccine). The molar ratio of lipids in this formulation is ALC-0315 : DSPC : Cholesterol : ALC-0159 = 46.3 : 9.4 : 42.7 : 1.6, and RNA to lipid weight ratio is 0.05 (wt/wt) [1] .

A. Lipid Mixture Preparation

1. Dissolve lipids in ethanol and prepare 10 mg/m stock solutions. The lipid stock solutions can be stored at ?20°C for later use.

Note 1: The ionizable lipid is usually a liquid. Due to the viscosity, it should always be weighed rather than relying on the autopipette volume.

Note 2: Cholesterol in solution should be kept warm (>37℃) to maintain fluidity. Transfer the cholesterol solution promptly to avoid cooling.

2. Prepare the lipid mixture solution as described. For each mL of lipid mixture add the following: 560 μL of 10mg/mL ALC-0315 (HY-138170), 261 μL of 10mg/mL Cholesterol (HY-N0322), 117 μL of 10mg/mL DSPC (HY-W040193), and 62 μL of ALC-0159 (HY-138300). Mix the solutions thoroμghly to achieve a clear solution. This mixture contains 10 mg of total lipid.

Note 3: The choice of lipids and ratios may be changed as desired and this will affect the LNP properties (size, polydispersity, and efficacy) and the amount of mRNA required.

B. mRNA Preparation

1. Prepare a 166.7 μg/mL mRNA solution with 100 mM pH 5 sodium acetate buffer.

Note 4: The lipid:mRNA weight ratio influences the encapsulation efficiency. Other weight ratios may be prepared as alternative formulations and should be adjusted accordingly by user.

C. Mixing

There are three commonly used methods to achieve rapid mixing of the solutions: the pipette mixing method, the vortex mixing method, and the microfluidic mixing method. All these mixing methods can be used for various applications.

It is important to note that pipette mixing method and vortex mixing method may yield more heterogeneous LNPs with lower encapsulation efficiencies and is prone to variability. Microfluidic devices enable rapid mixing in a highly controllable, reproducible manner that achieves homogeneous LNPs and high encapsulation efficiency. Within these devices, the ethanolic lipid mixture and aqueous solution are rapidly combined in individual streams. LNPs are formed as the two streams mix and are then collected into a single collection tube.

1. Pipette Mixing Method:

1.1. Pipette 3 mL of the mRNA solution and quickly add it into 1 mL of the lipid mixture solution (A 1:3 ratio of ethanolic lipid mixture to aqueous buffer is generally used.) Pipette up and down rapidly for 20–30 seconds.

1.2. Incubate the resulting solution at room temperature for up to 15 minutes.

1.3. After mixing, the LNPs were dialyzed against PBS (pH 7.4) for 2 h, sterile filtered using 0.2 μm filters, and stored at 4°C.

2. Vortex Mixing Method:

1.1. Vortex 3 mL of mRNA solution at a moderate speed on the vortex mixer. Then, Quickly add 1 mL of the lipid mixture solution into the vortexing solution (A 1:3 ratio of ethanolic lipid mixture to aqueous buffer is generally used.). Continue vortexing the resulting dispersion for another 20–30 seconds.

1.2. Incubate the resulting solution at room temperature for up to 15 minutes.

1.3. After mixing, the LNPs were dialyzed against PBS (pH 7.4) for 2 h, sterile filtered using 0.2 μm filters, and stored at 4°C.

3. Microfluidic Mixing Method:

1.1 The 3 mL of mRNA buffer solution and 1 mL of the lipid mixture solution were mixed at a total flow rate of 12 ?mL/min in a microfluidic device (A 1:3 ratio of ethanolic lipid mixture to aqueous buffer is generally used.).

Note 5: Parameters such as the flow rate ratio and total flow rate can be altered to fine-tune LNPs.

1.2. After mixing, the LNPs were dialyzed against PBS (pH 7.4) for 2 h, sterile filtered using 0.2 μm filters, and stored at 4°C.

Reference

1. Curr Issues Mol Biol. 2022 Oct 19;44(10):5013-5027.

2. Curr Protoc. 2023;3(9):e898.

MedChemExpress (MCE) has not independently confirmed the accuracy of these methods. They are for reference only.

Solvent & Solubility
In Vitro: 

Ethanol : 100 mg/mL (130.50 mM; Need ultrasonic)

DMSO : 50 mg/mL (65.25 mM; Need ultrasonic; Hygroscopic DMSO has a significant impact on the solubility of product, please use newly opened DMSO)

Preparing
Stock Solutions
Concentration Solvent Mass 1 mg 5 mg 10 mg
1 mM 1.3050 mL 6.5251 mL 13.0502 mL
5 mM 0.2610 mL 1.3050 mL 2.6100 mL
View the Complete Stock Solution Preparation Table

* Please refer to the solubility information to select the appropriate solvent. Once prepared, please aliquot and store the solution to prevent product inactivation from repeated freeze-thaw cycles.
Storage method and period of stock solution: -80°C, 6 months; -20°C, 1 month (protect from light). When stored at -80°C, please use it within 6 months. When stored at -20°C, please use it within 1 month.

Select the appropriate dissolution method based on your experimental animal and administration route.

For the following dissolution methods, please ensure to first prepare a clear stock solution using an In Vitro approach and then sequentially add co-solvents:
To ensure reliable experimental results, the clarified stock solution can be appropriately stored based on storage conditions. As for the working solution for in vivo experiments, it is recommended to prepare freshly and use it on the same day.
The percentages shown for the solvents indicate their volumetric ratio in the final prepared solution. If precipitation or phase separation occurs during preparation, heat and/or sonication can be used to aid dissolution.

  • Protocol 1

    Add each solvent one by one:  10% DMSO    40% PEG300    5% Tween-80    45% Saline

    Solubility: ≥ 2.5 mg/mL (3.26 mM); Clear solution

    This protocol yields a clear solution of ≥ 2.5 mg/mL (saturation unknown).

    Taking 1 mL working solution as an example, add 100 μL DMSO stock solution (25.0 mg/mL) to 400 μL PEG300, and mix evenly; then add 50 μL Tween-80 and mix evenly; then add 450 μL Saline to adjust the volume to 1 mL.

    Preparation of Saline: Dissolve 0.9 g sodium chloride in ddH₂O and dilute to 100 mL to obtain a clear Saline solution.
  • Protocol 2

    Add each solvent one by one:  10% DMSO    90% (20% SBE-β-CD in Saline)

    Solubility: 2.5 mg/mL (3.26 mM); Suspended solution; Need ultrasonic

    This protocol yields a suspended solution of 2.5 mg/mL. Suspended solution can be used for oral and intraperitoneal injection.

    Taking 1 mL working solution as an example, add 100 μL DMSO stock solution (25.0 mg/mL) to 900 μL 20% SBE-β-CD in Saline, and mix evenly.

    Preparation of 20% SBE-β-CD in Saline (4°C, storage for one week): 2 g SBE-β-CD powder is dissolved in 10 mL Saline, completely dissolve until clear.
Purity & Documentation
References

You might also be interested by the following products:



Cat#
Description
Cond.
Price Bef. VAT
T9410-100mg
 100mg 
T5823-100mg
 100mg 
T9277-100mg
 100mg