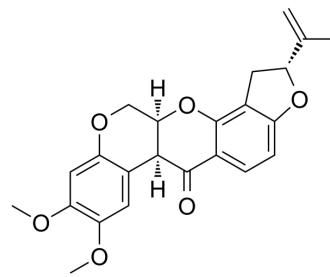


Rotenone

Cat. No.: HY-B1756

CAS No.: 83-79-4

Molecular Formula: C₂₃H₂₂O₆


Molecular Weight: 394.42

Target: Mitochondrial Metabolism; Autophagy; Apoptosis

Pathway: Metabolic Enzyme/Protease; Autophagy; Apoptosis

Storage: -20°C, stored under nitrogen

* In solvent : -80°C, 1 year; -20°C, 6 months (stored under nitrogen)

SOLVENT & SOLUBILITY

In Vitro

DMSO : 50 mg/mL (126.77 mM; Need ultrasonic)

Preparing Stock Solutions	Concentration	Mass		
		1 mg	5 mg	10 mg
	1 mM	2.5354 mL	12.6768 mL	25.3537 mL
	5 mM	0.5071 mL	2.5354 mL	5.0707 mL
	10 mM	0.2535 mL	1.2677 mL	2.5354 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

1. Add each solvent one by one: 0.5% CMC-Na/saline water
Solubility: 25 mg/mL (63.38 mM); Suspended solution; Need ultrasonic
2. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline
Solubility: ≥ 2.5 mg/mL (6.34 mM); Clear solution
3. Add each solvent one by one: 10% DMSO >> 90% (20% SBE-β-CD in saline)
Solubility: 2.5 mg/mL (6.34 mM); Suspended solution; Need ultrasonic
4. Add each solvent one by one: 10% DMSO >> 90% corn oil
Solubility: ≥ 2.5 mg/mL (6.34 mM); Clear solution
5. Add each solvent one by one: 5% DMSO >> 95% (20% SBE-β-CD in saline)
Solubility: 2.5 mg/mL (6.34 mM); Suspended solution; Need ultrasonic

BIOLOGICAL ACTIVITY

Description

Rotenone is a mitochondrial electron transport chain complex I inhibitor. Rotenone induces apoptosis through enhancing mitochondrial reactive oxygen species production.

In Vitro

Mitogen Activated Protein Kinase (MAPK), Toll-like receptor, Wnt, and Ras signaling pathways are intensively involved in the

effect of rotenone on the ENS^[2].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

In Vivo

Note:

Please do not refer to only one article to determine the experimental conditions. It is recommended to determine the optimal experimental conditions (animal strain, age, dosage, frequency and cycle, detection time and indicators, etc.) through preliminary experiments before the formal experiment.

Rotenone can be used to create Parkinson's disease models.

Induction of Parkinson's model^[6]

● Background

Cell loss of dopaminergic (DA) neurons in the substantia nigra is a common feature of Parkinson's disease. Rotenone induces DA neuronal cytotoxicity, leading to motor deficits in the substantia nigra and loss of DA neuronal cells in mice.

● Specific Modeling Methods

Mice: male • C57BL/6J mice • 8 weeks old • 20-25 g

Administration: 30 mg/kg in 12 mL/kg • po • once daily for 28 days

Note

The control group was treated with 0.5% Carboxylmethylcellulose (CMC).

● Modeling Indicators

Mouse dyskinesia: slow movement/inadequate movement ability.

● Correlated Product(s): /

● Opposite Product(s): /

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

CUSTOMER VALIDATION

- Signal Transduct Target Ther. 2025 Dec 17;10(1):413.
- Signal Transduct Target Ther. 2025 May 28;10(1):167.
- Nature. 2023 Sep;621(7977):188-195.
- Nat Cancer. 2022 Aug;3(8):945-960.
- Nat Metab. 2022 Sep;4(9):1119-1137.

See more customer validations on www.MedChemExpress.com

REFERENCES

[1]. Takeuchi H, et al. Nicotinic receptor stimulation protects nigral dopaminergic neurons in rotenone-induced Parkinson's disease models. *J Neurosci Res.* 2009 Feb;87(2):576-85.

[2]. Khadrawy YA, et al. Cerebellar neurochemical and histopathological changes in rat model of Parkinson's disease induced by intrastratal injection of rotenone. *Gen Physiol Biophys.* 2016 Nov 30.

[3]. Guan Q, et al. RNA-Seq Expression Analysis of Enteric Neuron Cells with Rotenone Treatment and Prediction of Regulated Pathways. *Neurochem Res.* 2016 Nov 30.

[4]. Kishore Kumar SN, et al. *Morinda citrifolia* mitigates rotenone-induced striatal neuronal loss in male Sprague-Dawley rats by preventing mitochondrial pathway of intrinsic apoptosis. *Redox Rep.* 2016 Nov 24:1-12.

[5]. Zhang ZN, et al. Subcutaneous rotenone rat model of Parkinson's disease: dose exploration study. *Brain Res.* 2016 Nov 19, pii: S0006-8993(16)30776-4.

[6]. Li N, et al. Mitochondrial complex I inhibitor rotenone induces apoptosis through enhancing mitochondrial reactive oxygen species production. *J Biol Chem.* 2003 Mar 7;278(10):8516-25.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898

Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite F, Monmouth Junction, NJ 08852, USA